
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

CMR Engineering College 19|P a g e

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction

System

A.padmaja, Mr.Rajshekar
M.Tech Scholar, CMR Engineering College

Asst.Professor, Dept. of CSE, CMR Engineering College,Hydearbad,

E-Mail: ruthikareddy23@gmail.com

Abstract:
In this paper, we present PACK (Predictive ACKs),a novel end-to-end traffic redundancy elimination (TRE)

system,designed for cloud computing customers. Cloud-based TRE needs to apply a judicious use of cloud

resources so that the bandwidth cost reduction combined with the additional cost of TRE computation and

storage would be optimized. PACK’s main advantage is its capability of offloading the cloud-server TRE effort

to endclients.PACK does not require the server to continuously maintain clients’ status. PACK is based on a

novel TRE technique, which allows the client to use newly received chunks to identify previously received

chunk chains, which in turn can be used as reliable predictors to future transmitted chunks.

Index Terms—Caching, cloud computing, network optimization, traffic redundancy elimination.

Introduction

CLOUD computing offers its customers an

economical and convenient pay-as-you-go service

model, known also as usage-based pricing [2]. Cloud

customers1 pay only for the actual use of computing

resources, storage, and bandwidth,according to their

changing needs, utilizing the cloud’s scalable and

elastic computational capabilities. In particular,data

transfer costs (i.e., bandwidth) is an important issue

when trying to minimize costs [2]. Consequently,

cloud customers,applying a judicious use of the

cloud’s resources, are motivated to use various traffic

reduction techniques, in particular traffic redundancy

elimination (TRE), for reducing bandwidth costs.

Traffic redundancy stems from common end-

users’ activities,such as repeatedly accessing,

downloading, uploading (i.e.,backup), distributing,

and modifying the same or similar information items

(documents, data, Web, and video). TRE is used to

eliminate the transmission of redundant content and,

therefore, to significantly reduce the network cost. In

most common TRE solutions, both the sender and the

receiver examine and compare signatures of data

chunks, parsed according to the data content, prior to

their transmission.When redundant chunks are

detected, the sender replaces the transmission of each

redundant chunk with its strong signature [3]–[5].

Commercial TRE solutions are popular at enterprise

networks, and involve the deployment of two or more

proprietary-protocol, state synchronized middle-

boxes at both the intranet entry points of data centers

and branch offices, eliminating repetitive traffic

between them(e.g., Cisco [6], Riverbed [7], Quantum

[8], Juniper [9], BlueCoat [10], Expand Networks

[11], and F5 [12]).

While proprietary middle-boxes are popular

point solutions within enterprises, they are not as

attractive in a cloud environment.Cloud providers

cannot benefit from a technology whose goal is to

reduce customer bandwidth bills, and thus are not

likely to invest in one. The rise of ―on-demand‖ work

spaces, meeting rooms, and work-from-home

solutions [13] detaches the workers from their

offices. In such dynamic work environment,fixed-

point solutions that require a client-side and a server-

side middle-box pair become ineffective. On the

other hand, cloud-side elasticity motivates work

distribution among servers and migration among data

centers. Therefore, it is commonly agreed that a

universal, software-based, end-to-end TRE is crucial

in today’s pervasive environment [14], [15]. This

enables the use of a standard protocol stack and

makes a TRE within end-to-end secured traffic (e.g.,

SSL) possible. Current end-to-end TRE solutions are

sender-based. In the case where the cloud server is

the sender, these solutions require that the server

continuously maintain clients’ status. We show here

that cloud elasticity calls for a new TRE

solution.First, cloud load balancing and power

optimizations may lead to a server-side process and

data migration environment, in which TRE solutions

that require full synchronization between the server

and the client are hard to accomplish or may lose

efficiency due to lost synchronization. Second, the

popularity of rich media that consume high

bandwidth motivates content distribution network

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

CMR Engineering College 20|P a g e

(CDN) solutions, in which the service point for fixed

and mobile users may change dynamically

accordingto the relative service point locations and

loads.

EXISTING SYSTEM

Traffic redumdamcy systems from common

end users activities,such as repeatedly

accessing,downloading ,uploading,distributing and

modifying same or similar information items(docu-

-ments,data,web and video). TRE is used to eliminate

the transmission of redundant conten t and, therefore

To significant reduce the network cost. In most com-

-mon TRE solutions, both the sender and the receiver

Examine and compare signatures of data chunks,

parsed according to the data content,prior to their tra-

-nsmission.when redundant chunks are detected,the

Sender replaces the transmission of each redundant

Chunk with its strong signature.Commercial TRE

Solutions are poipular enterprise networks,and

involve the development of two or more proprietary-

Protocol,state synchronise middle-boxes at both the

intranet entry points of data centers.

DISADVANTAGES OF EXISTING SYSTEMS:

 Cloud providers cannot benefit from a

technology whose gole is to reduce customer

Bandwidth bills,and thus are not likely to

invest is one.

 The rise of ―on-demand‖ work spaces,

meeting rooms,and work-from-home

solutions detatches the workers from their

offices.In such a dynamic work

environment,fixed-point solutions that

require client-side and a server- side middle-

box pair become in effective.

 Cloud load balancing and power

optimizations may lead to a server-side

process and data migration environment,

In which TRE solutions that require full

synchronization between the server and the

client are hard to accomplish or may loss

efficiency due to lost synchornisation.

 Current end-to-end solutions also suffer

from the requirement to maintain end-to-end

synchornisation that may result in degraded

TRE effeiciency.

PROPOSED SYSTEM

In this paper,we present a novel receiver-

based end-to-end TRE solution that relies on the

power of prediction to eliminate redundant traffic

between the cloud and its end-users.In this solution ,

each receiver observes the incoming stream and tries

to match its chunks with a previously received chunk

chain or a chunk chain of a local file.

Using the long-term chunks metadata information

kept locally,the receiver sends to the server

predictions that include chunks signatures and easy-

to-verify hints of the sender users data.

ADVANTAGES OF PROPOSED SYSTEMS

 Our approach can reach the data processing

speed over3 Gbs,atleast 20% faster than rabin

fingerprinting

 The receiver-based TRE solution addresses

mobility problems common to quasi-mobile

desktop.

 One of then is cloudy elasticity due to which

servers dynamically relocated around the

federate cloud,thus causing clients to interact

with multiple changing servers.

 We implemented,tested,and performed realistic

experiments with PACK within a cloud

environment.our experiments demonstrate a

cloud cost reduction achieved at a reasonable

client effort while gaining additional band width

savings at the client side.

SYSTEM ARCHITECTURE

PACK ALGORITHM

The stream of data received at the PACK

receiver is parsed to a sequence of variable-size,

content-based signed chunks similar to [3] and [5].

The chunks are then compared to the receiver local

storage, termed chunk store. If a matching chunk is

found in the local chunk store, the receiver retrieves

the sequence of subsequent chunks, referred to as a

chain, by traversing the sequence of LRU chunk

pointers that are included in the chunks’ metadata.

A. Receiver Chunk Store

PACK uses a new chains scheme, described

in Fig. 1, in which chunks are linked to other chunks

according to their last received order. The PACK

receiver maintains a chunk store, which is a large size

cache of chunks and their associated metadata.

Chunk’s metadata includes the chunk’s signature and

a (single) pointer to the successive chunk in the last

received stream containing this chunk. Caching and

indexing techniques are employed to efficiently

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

CMR Engineering College 21|P a g e

maintain and retrieve the stored chunks, their

signatures, and the chains formed by traversing

the chunk pointers When the new data are received

and parsed to chunks, the receiver computes each

chunk’s signature using SHA-1. At this point, the

chunk and its signature are added to the chunk store.

In addition, the metadata of the previously received

chunk in the same stream is updated to point to the

current chunk. The unsynchronized nature of PACK

allows the receiver to map each existing file in the

local file system to a chain of chunks, saving in the

chunk store only the metadata associated

with the chunks.3 Using the latter observation, the

receiver can also share chunks with peer clients

within the same local network utilizing a simple map

of network drives. The utilization of a small chunk

size presents better redundancy elimination when

data modifications are fine-grained, such as sporadic

changes in an HTML page. On the other hand, the

use of smaller chunks increases the storage index

size, memory usage, and magnetic disk seeks. It also

increases the transmission overhead of the virtual

data exchanged between the client and the server.

Unlike IP-level TRE solutions that are limited by the

IP packet size (B), PACK operates on TCP streams

and can therefore handle large chunks and entire

chains. Although our design permits each PACK

client to use any chunk size, we recommend an

average chunk size of 8 kB.

B. Receiver Algorithm

Upon the arrival of new data, the receiver

computes the respective signature for each chunk and

looks for a match in its local chunk store. If the

chunk’s signature is found, the receiver determines

whether it is a part of a formerly received chain,

using the chunks’ metadata. If affirmative, the

receiver sends a prediction to the sender for several

next expected chain chunks. The prediction carries a

starting point in the byte stream (i.e., offset) and the

identity of several subsequent chunks (PRED

command).

Upon a successful prediction, the sender

responds with a PRED-ACK confirmation message.

Once the PRED-ACK message is received and

processed, the receiver copies the corresponding data

from the chunk store to its TCP input buffers, placing

it according to the corresponding sequence numbers.

At this point, the receiver sends a normal TCP ACK

with the next expected TCP sequence number. In

case the prediction is false, or one or more predicted

chunks are already sent, the sender continues with

normal operation, e.g., sending the raw

data, without sending a PRED-ACK message.

Proc. 1: Receiver Segment Processing

1. if segment carries payload data then

2. calculate chunk

3. if reached chunk boundary then

4. activate predAttempt()

5. end if

6. else if PRED-ACK segment then

7. processPredAck()

8. activate predAttempt()

9. end if

Proc. 2: predAttempt()

1. if received chunk matches one in chunk store then

2. if foundChain(chunk) then

3. prepare PREDs

4. send single TCP ACK with PREDs according to

Options free space

5. exit

6. end if

7. else

8. store chunk

9. link chunk to current chain

10. end if

11. send TCP ACK only

Proc. 3: processPredAck()

1. for all offset PRED-ACK do

2. read data from chunk store

3. put data in TCP input buffer

4. end for

C. Sender Algorithm

When a sender receives a PRED message

from the receiver, it tries to match the received

predictions to its buffered (yet to be sent) data. For

each prediction, the sender determines the

corresponding TCP sequence range and verifies the

hint. Upon a hint match, the sender calculates the

more computationally intensive SHA-1 signature for

the predicted data range and compares the result to

the signature received in the PRED message. Note

that in case the hint does notmatch, a computationally

expansive operation is saved. If the two SHA-1

signatures match, the sender can safely assume that

the receiver’s prediction is correct. In this case, it

replaces the corresponding outgoing buffered data

with a PRED-ACK message.

D. Wire Protocol

In order to conform with existing firewalls

and minimize overheads, we use the TCP Options

field to carry the PACK wire protocol. It is clear that

PACK can also be implemented above the TCP level

while using similar message types and control fields.

Fig. 3 illustrates the way the PACK wire protocol

operates under the assumption that the data is

redundant. First, both sides enable the PACK option

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

CMR Engineering College 22|P a g e

during the initial TCP handshake by adding a PACK

permitted flag (denoted by a bold line) to the TCP

Options field. Then, the sender sends the (redundant)

data in one or more TCP segments, and the receiver

identifies that a currently received chunk is identical

to a chunk in its chunk store. The receiver, in turn,

triggers a TCP ACK message andincludes the

prediction in the packet’s Options field. Last, the

sender sends a confirmation message (PRED-ACK)

replacing the actual data.

Sender algorithms. (a) Filling the prediction

queue. (b) Processing the

prediction queue and sending PRED-ACK

PACK wire protocol in a nutshell:

OPTIMIZATIONS

For the sake of clarity, Section III presents

the most basic version of the PACK protocol. In this

section, we describe additional options and

optimizations.

A. Adaptive Receiver Virtual Window

PACK enables the receiver to locally obtain the

sender’s data when a local copy is available, thus

eliminating the need to send this data through the

network. We term the receiver’s fetching of such

local data as the reception of virtual data. When the

sender transmits a high volume of virtual data, the

connection rate may be, to a certain extent, limited by

the number of predictions sent by the receiver. This,

in turn, means that the receiver predictions and the

sender confirmations should be expedited in order to

reach high virtual data rate. For example, in case of a

repetitive success in predictions, the receiver’s side

algorithm may become optimistic and gradually

increase the ranges of its predictions, similarly to the

TCP rate adjust

Proc. 4: predAttemptAdaptive()—obsoletes Proc. 2

1. {new code for Adaptive}

2. if received chunk overlaps recently sent prediction

then

3. if received chunk matches the prediction then

4. predSizeExponent()

5. else

6. predSizeReset()

7. end if

8. end if

9. if received chunk matches one in signature cache

then

10. if foundChain(chunk) then

11. {new code for Adaptive}

12. prepare PREDs according to predSize

13. send TCP ACKs with all PREDs

14. exit

15. end if

16. else

17. store chunk

18. append chunk to current chain

19. end if

20. send TCP ACK onlyment procedures.

Proc. 5: processPredAckAdaptive()—obsoletes Proc.

3

1. for all offset PRED-ACK do

2. read data from disk

3. put data in TCP input buffer

4. end for

5. {new code for Adaptive}

6. predSizeExponent()

B. Cloud Server as a Receiver

In a growing trend, cloud storage is

becoming a dominant player [23], [24]—from backup

and sharing services [25] to the American National

Library [26], and e-mail services [27], [28]. In many

of these services, the cloud is often the receiver of the

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

CMR Engineering College 23|P a g e

data. If the sending client has no power limitations,

PACK can work to save bandwidth on the upstream

to the cloud. In these cases, the end-user acts as a

sender, and the cloud server is the receiver. The

PACK algorithm need not change. It does require,

however, that the cloud server—like any PACK

receiver— maintain a chunk store.

C.Hybrid Approach

PACK’s receiver-basedmode is less efficient

if changes in the data are scattered. In this case, the

prediction sequences are frequently interrupted,

which, in turn, forces the sender to revert to raw data

transmission until a new match is found at the

receiver and reported back to the sender. To that end,

we present the PACK hybrid mode of operation,

described in Proc. 6 and Proc. 7.When PACK

recognizes a pattern of dispersed changes,

it may select to trigger a sender-driven approach in

the spirit of [4], [6], [7], and [18].

Proc. 6: Receiver Segment Processing Hybrid—

obsoletes

Proc. 1

1. if segment carries payload data then

2. calculate chunk

3. if reached chunk boundary then

4. activate predAttempt()

5. {new code for Hybrid}

6. if detected broken chain then

7. calcDispersion(255)

8. else

9. calcDispersion(0)

10. end if

11. end if

12. else if PRED-ACK segment then

13. processPredAck()

14. activate predAttempt()

15. end if

Proc. 7: processPredAckHybrid()—obsoletes Proc. 3

1. for all offset PRED-ACK do

2. read data from disk

3. put data in TCP input buffer

4. {new code for Hybrid}

5. for all chunk offset do

6. calcDispersion(0)

7. end for

8. end for

CONCLUSION

Cloud computing is expected to trigger high

demand for TRE solutions as the amount of data

exchanged between the cloud and its users is

expected to dramatically increase. The cloud

environment

redefines the TRE system requirements, making

proprietary middle-box solutions inadequate.

Consequently, there is a rising need for a TRE

solution that reduces the cloud’s operational cost

while accounting for application latencies, user

mobility, and cloud elasticity.

REFERENCES
[1] E. Zohar, I. Cidon, and O. Mokryn, ―The power of

prediction: Cloud bandwidth and cost reduction,‖ in

Proc. SIGCOMM, 2011, pp. 86–97.

[2] M. Armbrust, A. Fox, R. Griffith, A. D.

Joseph,R.Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, ―A view of cloud computing,‖ Commun.

ACM, vol. 53, no. 4, pp. 50–58, 2010.

[3] U. Manber, ―Finding similar files in a large file

system,‖ in Proc. USENIX Winter Tech. Conf.,

1994, pp. 1–10.

[4] N. T. Spring and D. Wetherall, ―A protocol-

independent technique for eliminating redundant

network traffic,‖ in Proc. SIGCOMM, 2000, vol.30,

pp. 87–95.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, ―A

low-bandwidth network file system,‖ in Proc.

SOSP, 2001, pp. 174–187.

[6] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul, ―Method

and apparatus for reducing network traffic over low

bandwidth links,‖ US Patent 7636767, Nov. 2009.

[7] S.Mccanne andM. Demmer, ―Content-based

segmentation scheme for data compression in

storage and transmission including hierarchical

segment representation,‖ US Patent 6828925, Dec.

2004.

[8] R. Williams, ―Method for partitioning a block of

data into subblocks and for storing and

communicating such subblocks,‖ US Patent

5990810, Nov. 1999.

[9] Juniper Networks, Sunnyvale, CA, USA,

―Application acceleration,‖1996 [Online].

Available: http://www.juniper.net/us/ en/products-

services/application-acceleration/

[10] Blue Coat Systems, Sunnyvale, CA, USA,

―MACH5,‖ 1996 [Online]. Available:

http://www.bluecoat.com/products/mach5

[11] Expand Networks, Riverbed Technology, San

Francisco, CA, USA, ―Application acceleration and

WAN optimization,‖1998 [Online]. Available:

http://www.expand.com/technology/application-

acceleration.aspx

[12] F5, Seattle,WA, USA, ―WAN optimization,‖ 1996

[Online]. Available:

http://www.f5.com/solutions/acceleration/wan

optimization/

[13] A. Flint, ―The next workplace revolution,‖ Nov.

2012 [Online]. Available:

http://m.theatlanticcities.com/jobs-and-

economy/2012/11/ nextworkplace-revolution/3904/

http://www.juniper.net/us/
http://www.f5.com/solutions/acceleration/wan
http://m.theatlanticcities.com/jobs-and-economy/2012/11/
http://m.theatlanticcities.com/jobs-and-economy/2012/11/

